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Abstract—Minibus taxis provide affordable alternative trans-
port for the majority of urban working population in Sub-
Saharan Africa. Often, these taxis do not follow predefined routes
in their endeavours to look for passengers. Frequently, they stop
by roadsides to pick up passengers and sometimes go off the
main route in an attempt to fill the taxi with passengers to
make the trip profitable. In addition, the destinations are changed
from time to time depending on the driver. This uncoordinated
movement creates a web of confusion to would-be passengers. The
key aspects that are not clear to the passengers include; where to
get a taxi, the waiting time and the travel time to the destination.
These conditions leave taxi passengers at a very big disadvantage.
In this research, we applied the concepts of machine learning
and network theory to model the movements of taxis between
stops. The model can be used to compute the waiting times at
the stops and the travel times to a specified destination. Twelve
minibus taxis were tracked for 6 months. Density-based clustering
was used to discover the formal and informal taxi stops, which
were modelled into a flow network with the significant stops as
nodes and the frequency of departures between nodes as edges
representing the strength of connectivity. A data driven model was
developed. From the model, we can predict the time a passenger
will have to wait at a stop in order to get a taxi and the trip
duration.

I. INTRODUCTION

The medium-sized minibus taxis which carry 10 to 15 pas-
sengers dominate the public transport sector in South Africa.
60 % of South African citizens rely on them and they transport
an average of 14 million people every day. However, they are
not reliable and not properly regulated by government. If by
chance a passenger stands at the right pick up place, they do
not know how long to wait before the next taxi will pass by and
the travel time to reach their destination. In our earlier study
[1] we discovered the informal stops where the taxis pick up
and drop passengers. In this paper we model the movements
of the minibus taxis between the stops in order determine (1)
the waiting time at the stops, and (2) the trip durations as the
taxis move from one stop to the other.

We believe that this information is key in understanding
the operations of the informal public transport sector where
the minibus taxis are dominant. The rest of this paper is
organised as follows. Section II discuses the background to the
study. Section III discusses the theoretical basis of the research,
section IV discusses the methods used, section V discusses the
results and section VI concludes the paper.

II. BACKGROUND

In our earlier study [1], we used machine learning to find
the formal and informal stops (Figure 1 (a, b and c)) of taxis
operating between towns in the Western Cape. During that
study, it was discovered that the rate at which taxis stopped at
different stops varied according to the days of the week and
the times of the day. We demonstrated that by using historical
GPS locations, we could predict the most probable place where
a traveller could get a taxi depending on the time of the day
and the day of travel. However, we were not able to tell how
long the person would wait at the stop in order to get a taxi
and the duration of the journey. We therefore recommended
further investigations to find the waiting time at the stops, the
routes taken by the taxis and the trip durations. In the current
study we considered the waiting time at the stops and the trip
durations of the taxis.

III. LITERATURE REVIEW

Researchers have in the past attempted to model transporta-
tion systems and many models have been developed. These
models were categorised by Zhou and Dai [2] into two, i.e
Freight transportation models for goods in transit and passen-
ger transportation models for human passengers. In developed
cities, passenger transportation models have traditionally been
part and parcel of urban design [3]. The main objectives of the
incorporation are (1) to reduce the number of motorized trips,
(2) to increase the number of non-motorized trips, and (3) to
increase vehicle occupancy. Traditional transportation models
have always been theoretical and based on mathematical
description of processes. Such models forecast travel demand
based on trip generation, trip distribution, transportation mode
(public/private) and route choice [4].

The 21st century era of powerful computing introduced
a new method of modelling – Data Driven Modelling(DDM).
DDM uses vast amounts of data about the process and methods
of computational intelligence and machine learning to model
processes [5]. Some of the methods used include Network
analysis, Neural networks, Markov models and many more.
Network analysis in particular interprets the modelled process
into a network graph with discrete objects represented as
vertices and the relationships between the objects represented
as edges. Combined with machine learning, researchers have
applied network analysis to model problems in many fields
such as in neural science [6].
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a) Plot of all GPS records in the dataset  b) Plot of cluster representing the informal taxi stops  

c) Ground view of the taxi stops in Kayamandi town-

ship and Stellenbosch  

 

Fig. 1. Figures showing the formal and informal stops discovered during our previous study

The reviewed literature suggests that the network analysis
method has successfully been used before to model processes.
Furthermore, in the presence of data, DDM can be used to
study processes and develop dynamic models that learn from
the data. It is on this basis that we sought to apply the methods
to model the movements of minibus taxis.

IV. METHODS USED

In this study, we used two methods. (1) Vector overlay
of GPS trajectories in a circle to map out the significant
nodes/stops, and (2) network theory to model the movements
of the taxis between the significant nodes/stops.

A. Data sources

Ten minibus taxis (assets) operating between Stellenbosch,
Somerset West, Strand, and Bellville were equipped with GPS
(Global Positioning System) tracking devices. Each device
had a GSM (Global System for Mobile communications) sim
card installed and would log GPS locations of the taxi to a
remote server through the GSM network. Data was logged
at a nominal frequency of 1Hz. Attributes of the data that
was logged included - date and time, GPS location (longitude
and latitude), speed and direction among others. This dataset
contained a total of 1,842,570 GPS records collected over a
period of 6 months (December 2013 - May 2014).

B. Vector overlay of GPS coordinates

Overlay analysis is a technique commonly used in GIS
(Geographical Information Systems) studies where layers of
features are analysed to find intersects, unions and clips. In this
study we performed circular overlays over different regions of
dense GPS points – significant clusters (Figure 2b and c). To
create the overlays, centres were determined by computing the
mean GPS points of eleven significant clusters discovered in
the dataset when speeds were less than 2 km/h. The diameters
of the overlay circles were determined by measuring the
distance of the closest centres. This meant that centres that
were very close to each other had smaller radii compared
to those that were far apart as shown in Figure 2b. All the
Western Cape GPS records (1,842,570) and eleven centres with
radii ranging from 0.3 to 5 kilometres were used during the
overlay analysis. After the overlay analysis, GPS intersects

were obtained (These were records intersecting the overlay
circles) and labelled by appending meta-data representing the
ID of the intersecting circular layers. A total of 1,573,829
intersects were obtained. These were records in the close
proximity of the significant clusters since the mean point was
used as the center. From this point on, two assumptions were
made. (1) That each of the eleven significant clusters were
major sources and destinations of taxi trips. (2) That taxis
never stopped in other places during transit from one node to
the other. Results from this section opened way for our next
section (network flow analysis).

C. Network analysis

During this phase of our experiment, every overlaid region
(significant clusters region) was represented as a node on the
network (Figure 2c ). The objective of this phase was to study
the departure times and trip durations between the nodes for
all individual dates recorded in our dataset.

An algorithm was developed that processes the movements
of the taxis between the nodes. The algorithm takes the GPS
intersects, the node IDs, and the periodic interval. The periodic
interval is the time (in minutes) that defines the rate at which
the algorithm checks on the status of an asset to determine
if it has departed from the node or arrived at the node. The
interval was estimated such that was less than the expected
duration of travel of an asset between any two nodes. During
our experiment, we used the interval of 10 minutes. Figure
3 shows the sample modes of the assets at different periodic
intervals. In the table, assets A to L are monitored and their
modes recorded at different time intervals. For example, when
3 is recorded in a cell, it means that the asset was registered
active at node 3 during that periodic interval and N mean that
the asset was recorded inactive a given periodic time.

We then analysed the records obtained in the table (Figure
3) to get a count of departures and the trip durations between
nodes. During this analysis, we used a combination of two
modes (active/transmitting and inactive/not transmitting) and
a transition between them to explain three unique states in
the modelled system – ”atNode”, ”inTransit”, ”inSleep”.
An asset in our modelled system can only be in any of
the three states at a time. When an asset is active in two
successive intervals and it is at the same node, then the asset
is in ”atNode” state, e.g asset B at 15:00,15:10 and 15:20.
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a) GPS coordinates before spatial vector overlay  b) GPS coordinates after spatial vector overlay  c) Illustration of the resultant network model  

 

Fig. 2. Figures showing the vector overlay process and the first phase of modelling significant nodes into a graph

  15:00 15:10 15:20 15:30 15:40 15:50 16:00 16:10 16:20 16:30 16:40 16:50 17:00 17:10 17:20 17:30 17:40 17:50 18:00 18:10 18:20 18:30 18:40 18:50 19:00 19:10 

A 1 3 5 5 N 3 N 4 1 1 1 7 4 3 3 3 1 1 2 N N 2 2 1 1 N 

B 1 1 1 2 N 1 1 3 N 3 1 1 3 3 3 1 1 2 2 1 1 1 3 1 N N 

C 3 3 1 1 3 1 1 5 5 1 1 3 1 1 3 N N 3 3 3 N 8 8 8 5 1 

D N 3 N N N N N N 3 1 1 4 N N 3 1 1 1 1 1 1 1 N N 1 N 

E N N N N N N N N N N N N N N N N N N N N N N N N N N 

F N 7 N N N N N 3 1 1 3 3 6 6 3 1 1 1 1 3 2 1 1 1 1 3 

G N 4 3 3 3 N 3 1 1 3 N N N 3 1 1 N 3 3 3 1 1 1 1 N N 

H 3 3 3 7 N 8 N 8 N N 8 N 5 1 1 3 N 3 1 1 1 3 3 4 3 N 

I 6 6 3 1 1 3 1 1 1 1 3 2 1 1 3 3 N 3 1 1 3 N N N N 3 

J N N N N N N N N N N N N N N N N N N N N N N N N N N 

K 2 N N N 1 1 N N 1 1 N N N N N N N 1 1 1 1 N 11 11 N 11 

L N N N N N N N N N N N N N N N N N N N N N N N N N N 
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Periodic interval (10 minutes) 

Fig. 3. Table showing the periodic assessment of the assets (A-L) modes and the nodes(significant stops) where assets are transmitting from.

An ”inTransit” state is recorded if an inactive mode(s) is
observed between two active modes at different nodes, e.g
asset D during the 17:00 and 17:10 time intervals. An asset is
in ”inSleep” state if an inactive mode is recorded between
two active modes at the same node, e.g asset H during the
time intervals 16:20 and 16:30.

The results of the table in Figure 3 are analysed by a
separate algorithm which deduces two general matrices; (1)
the count of departures from the node for every day (identified
by the date), (2) the average duration between two nodes
(complete trip). Essentially, the algorithm monitors the time
and state of all assets for every time interval in the modelled
process. It records an asset departure from one node to another
if an ”inTransit” state is realised (e.g in Figure 3, asset D
departed from node 4 at 16:50 and arrived at node 3 at 17:20).
The algorithm uses the time difference to compute and record
the trip duration. For example the trip duration of asset D from
node 4 to node 3 recorded between 16:50 and 17:20 was 30
minutes. Figure 4a shows the sample departure count matrix
for a selected date and Figure 4b shows the sample average
duration matrix for the same day in the modelled system.

V. RESULTS

Taxis in the Western Cape tend to exhibit a deterministic
behaviour. Though the routes taken by the individual taxis
tend to change most of the time. It was discovered by cluster
analysis that over time these routes go through some specific
places (stops) where the taxis pick up and drop passengers.

However, some of these stops are not gazetted by the local
authorities hence we referred to them as informal stops.

At the stops (significant), taxi departures vary according
to the destination. Figure 4a shows a matrix of departure
counts from different places (nodes) on a Tuesday. It is clear
that there were more departures from node 3 to node 1 (177
departures) while there were no departures from node 3 to node
11. However, it was discovered that while in some cases there
are no direct departures between two nodes, these nodes are
still reachable through other nodes. For example, if a passenger
wanted to use a taxi from node 3 (Stellenbosch) to node 11
(Bellville), he/she can get a taxi from node 3 to node 1 and
then from node 1 to node 11.

By spreading the departure times at a single node through-
out the day, we can tell what time segment has the most fre-
quency of taxis departing and so we can compute the waiting
time depending on the time of arrival of the traveller. Figure 4c
shows the graph of varying departure frequencies from node 3
to other nodes during the day. In the plot, every line represents
trend of departures to one node in the modelled system. From
the graph, the peak departures from node 3 to node 1 happen
very early in the morning (05:00) and at around 17:00 hours in
the evening. It should be noted that the variations also depend
on the destination node. For example, departures to node 6
(Somerset West) on this day have their peak at around mid-
day. Therefore we can compute the waiting time at the node.
Similar graphs comparing inter-node durations can be plotted
and a similar analysis undertaken.
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  1 2 3 4 5 6 7 8 9 10 11 

1 0.0 10.1 12.5 12.6 10.1 10.0 10.0 41.6 0.0 24.1 23.6 

2 21.4 0.0 10.2 10.0 10.0 0.0 10.0 10.0 0.0 15.0 38.8 

3 10.9 19.6 0.0 10.0 10.1 10.0 13.8 19.9 0.0 19.5 0.0 

4 10.0 15.0 10.8 0.0 10.1 10.0 10.0 20.1 0.0 15.0 0.0 

5 10.0 10.0 13.6 10.0 0.0 10.6 20.0 13.8 0.0 0.0 0.0 

6 10.0 10.0 10.0 10.0 15.0 0.0 0.0 0.0 0.0 0.0 0.0 

7 10.0 10.0 10.4 10.1 13.1 0.0 0.0 15.4 0.0 10.0 0.0 

8 27.5 20.0 16.4 22.4 11.7 0.0 10.8 0.0 39.4 11.1 0.0 

9 0.0 0.0 30.0 0.0 0.0 0.0 0.0 15.0 0.0 0.0 0.0 

10 15.5 85.0 48.6 12.8 10.0 0.0 0.0 16.1 0.0 0.0 0.0 

11 24.9 35.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 270 0.0 

  1 2 3 4 5 6 7 8 9 10 11 

1 0 218 711 61 61 7 14 15 0 13 68 

2 180 0 33 5 3 0 1 1 0 2 56 

3 714 52 0 61 99 4 48 66 0 12 0 

4 62 3 88 0 17 5 17 32 0 3 0 

5 40 2 80 36 0 8 15 61 0 0 0 

6 9 1 5 5 6 0 0 0 0 0 0 

7 11 4 63 19 26 0 0 44 0 1 0 

8 14 2 63 33 32 0 72 0 5 22 0 

9 0 0 1 0 0 0 0 2 0 0 0 

10 12 4 11 7 1 0 0 23 0 0 0 

11 120 2 0 0 0 0 0 0 0 2 0 

Nodes (To) 

a) Matrix of departure counts on Tuesday b) Matrix of trip durations on Tuesday 

c) Graph showing the variation of departures from 

node three to other nodes through out the day 
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Nodes (To) 

12:00 06:00 18:00 

Fig. 4. Figures showing the matrices from the network modelling process and a graph of varying departure frequencies with time of the day.

Using the duration matrix, we can compute the duration of
the passenger journey. For example a passenger who wishes
to travel from node 3 to node 11, would take 10.9 minutes to
get to node 1 and 23.6 minutes to get to node 11 hence a total
of 35.5 minutes provided there is no delay at the intermediate
node.

From our results, time optimisation is possible by choosing
the most optimal travel choice. For example, in order to travel
to node 11 from node 3, there are two choices, i.e from node
3 to 1 to 11 which takes 35.5 minutes and from node 3 to 2 to
11, which takes 58.4 minutes. Travellers can then choose the
most optimal choices that suites their needs.

VI. CONCLUSION

Movement of taxi between stops have been studied and
modelled to provide useful information to the users of the in-
formal public transport sector (Minibus taxi users). If utilised,
users can reduce the time wasted waiting for taxis and during
the journey by planning their trips in advance.

For data driven models to be more accurate and precise,
there is need for a lot more data. This would assist researchers
in discovering more hidden behaviour regarding the minibus
taxis. Particularly there is need to study the variations of the
location of stops with particular seasons of the year; the delays
at the stops; and a continuous learning mechanism that will
always keep the models up-to-date.
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