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A B S T R A C T   

Urban travelers in Africa depend on minibus taxis for their daily social and business commuting. This paratransit 
system is loosely regulated, self-organizing, and evolves organically in response to demand. Our study used 
floating car data to analyze and describe the movement characteristics of nine minibus taxis in Kampala, Uganda. 
We made three intriguing findings. Firstly, in searching for, picking up and transporting passengers, minibus taxi 
trajectories followed a heavy-tailed power-law distribution similar to a “Lévy walk”. Secondly, their routes’ 
topology and shape gradually changed. Thirdly, the extraordinary winding (expressed in terms of tortuosity) of 
the paths suggested the extreme determination of the drivers’ search for passengers. Our findings could help city 
planners to build on the self-organizing characteristics of the minibus taxi system, and improve the mobility of 
travelers, by optimizing routes and the distribution of public amenities.   

1. Introduction 

In most African countries, minibus taxis are the backbone of public 
transportation. They transport more than 70% of the total urban trav
elers and dominate most social and economic aspects of urban mobility 
(Behrens et al., 2015). They form part of the broader organically evolved 
paratransit system that operates with little or no regulation in many 
developing cities of Africa and the Global South (Behrens et al., 2015). 
Minibus taxi transport is flexible and semi-adaptive, with stops, sched
ules, fares and routes primarily determined by demand (Lucas et al., 
2019). Unlike traditional bus rapid transit (BRT) systems that use buses 
on fixed routes and schedules developed a long time in advance, minibus 
taxi drivers in a paratransit system often plan their routes according to 
the occupancy status of the taxi and anticipated demand (Gauthier and 
Weinstock, 2010). 

The rapid urban population growth (6% per annum) is reshaping 
urban settlements and changing economic and social population dy
namics in Africa (Awumbila, 2017; Mccormick et al., 2016). Coupled 
with weak and non-transit-oriented city development policies, the 
population surge in cities will increase the problems of urban sprawl, 
scattered public amenities and unemployment. The mobility charac
teristics of urban dwellers will consequently change, triggering a change 
in minibus taxi movement characteristics in response, and the static 

minibus taxi route maps proposed by Klopp and Cavoli (Lucas et al., 
2019) will no longer be useful. By exploring the evolution of minibus 
taxi routes in Kampala’s paratransit system, our study could pave the 
way for solutions to the future minibus taxi travel problems. 

Minibus taxis rarely get enough passengers to fill up before departure 
unless they start trips from the major taxi ranks (which are typically few 
and travelers often shun them). They therefore search for passengers on 
the way to make the trips profitable. Sometimes, they wait (“hold back”) 
at selected stops in anticipation of passengers turning up, and some
times, they go off the main route to search for passengers in sparsely 
distributed places where they anticipate demand for their services. The 
taxis go up and down the streets in an apparently chaotic fashion, 
hooting repeatedly, calling out their destinations, randomly inviting 
pedestrians to board the taxi, and stopping anywhere to tout for po
tential passengers in total disregard of traffic and municipal laws. We 
suspected that analysis of these movements of minibus taxis would 
demonstrate a Lévy walk pattern during the passenger search process 
(shown in Fig. 1a). A “Lévy walk” (a term we use synonymously with 
“Lévy flight”) is a pattern of movements made by a random walker, 
where many short movements are randomly interspersed with long ones 
and occasionally very long ones, as illustrated in Fig. 1b(ii) (Kisaalita 
and Sentongo-Kibalama, 2007). In Fig. 1a, a minibus taxi moves from 
origin (O) to destination (D) but in the process makes many detours to 
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hunt for passengers in off-route locations L, S, S’ and L’. 
The Lévy walk theory broadly combines an organisms’ need for re

sources (e.g., food, shelter, or customers) and the need to reduce risks (e. 
g., from predators or competitors) with the density and renewability of 
resources to explain the organisms’ movement in space. This study fo
cuses on human movement where the minibus taxi driver represents the 
‘random walker’ and the minibus taxi travelers (trips demand) represent 
the resources being searched for under some predatory risks such as 
police enforcement, and competition from other minibus taxis on the 
same route. 

In our study we used floating car data (timestamped geo-localization 
data collected by moving vehicles) to characterize the movement pat
terns of minibus taxis in Kampala’s organically evolved paratransit 
system. We were interested in discovering whether minibus taxi move
ment patterns were consistent with Lévy walk behavior; whether the 
routes the taxis used changed topology or shape over time, in other 
words evolved; and whether their movements could suggest anything 
about their level of determination when searching for passengers. This 
study’s primary limitation is the scarcity of floating car data from many 
minibus taxis in Kampala. Thus, the analysis made in this paper is based 
on GPS tracking data from nine minibus taxis collected over a contin
uous period of eight months. 

2. The literature and applications to this study 

We divided the literature into three categories: the current status of 
paratransit in African cities, Lévy walk behavior in animal and human 
movements, and spatial similarity analysis of mobility trajectories. 

2.1. Current status of paratransit in African cities 

Until recently, the term “paratransit”, meaning “beyond standard 
transit”, or “alongside of standard transit”, was used (mostly in the US), 
to refer to supplementary public transport services that do not have fixed 
routes or timetables but instead respond to travel demand and prefer
ences and are often used by the elderly and the disabled. However, 
transport researchers have also adopted the term in the context of 
developing cities of Africa and the Global South to describe the informal 
transport that is synonymous with public transport in these cities 
(Behrens et al., 2015). Paratransit in developing African cities is 
composed of diverse modes, such as minibus taxis (Booysen et al., 2013), 
tricycle taxis, bicycle taxis (Ndibatya and Booysen, 2020a) and motor
cycle taxis (Rhee et al., 2011; Bradbury and Howe, 2002; Ehebrecht 
et al., 2018). In some African countries, motorcycle taxis dominate the 
modal share in terms of vehicle composition (e.g., in Lomé, Togo), but 
minibus taxis dominate the total share of passengers transported per day 
(Mccormick et al., 2016). In Kampala, for example, the Kampala Capital 
City Authority (KCCA) estimates that motorcycle taxis comprise 42% of 
vehicles and carry 9% of people, minibus taxis comprise 21% of vehicles 
and carry 82% of people. Private cars comprise 37% of vehicles and 

carry 9% of people (Evans et al., 2018). 
There are five main actors involved in minibus taxis system: the 

owner, the driver, the conductor, the authorities and the users (Booysen 
et al., 2013; Plano et al., 2020). The owner provides the vehicle, pays for 
the operating license and is responsible for the maintenance of the 
vehicle (Mutiso and Behrens, 2011). The driver rents the minibus taxi 
from the owners at a pre-negotiated daily fee and makes operation- 
specific decisions such as, when to provide the service, the route for a 
given trip, and the trip fare depending on the demand and where to stop 
to pick up passengers (Mutiso and Behrens, 2011). The conductor, if 
present, is responsible for touting and collecting fares from the passen
gers (Ndibatya and Booysen, 2020b; Plano et al., 2020). The majority of 
the paratransit users in Africa’s cities are not formally employed and 
thus tend to have variable and highly irregular commuting schedules 
and destinations (ITP, 2010). This influences the movement patterns of 
minibus taxis in the paratransit system. 

Several mapping projects have used floating car data to describe the 
routes taken by the informal paratransit minibus taxis in developing 
cities, such as Accra (Saddier et al., 2016), Nairobi, Maputo (Lucas et al., 
2019), Kampala (Ndibatya et al., 2016), Dar es Salaam and Stellenbosch 
(Ndibatya et al., 2014). These projects have in some instances produced 
route maps, such as Digital Matatu for Nairobi (matatu referring to 
“minibus” in Kenya (Heinze, 2018)) and the Mapas Dos Chapas for 
Maputo (chapa referring to “minibus” in Mozambique), as well as the 
standardized data in the general transit feed specification (GTFS) format 
used by developers to build mobile applications (Lucas et al., 2019). 
However, the paratransit mapping projects produced static maps, and 
the researchers ignored the possibility of changes in the routes that 
would render the maps irrelevant after less than five years. Thus the 
need to explore the concept of route evolution in the minibus taxi 
system. 

2.2. Lévy walk behavior in animal and human movements 

Movement by organisms is a biological process of great significance. 
In the reviewed literature, researchers have studied biologically moti
vated movement (searching for habitats, avoiding predators, or 
foraging) of organisms with cognitive abilities ranging from the rela
tively simple (e.g. bacteria), to the cognitively complex (e.g. humans), 
that demonstrates their ability to respond to external stimuli and 
memorize past movement experiences. The mechanisms by which or
ganisms make movement-related decisions have evolved, as has the 
biological context that determines the “currency of fitness” or “reward” 
associated with the movement (such as net food intake, predatory risk, 
profit, or time savings). To optimize the “currency of fitness”, models 
have been formulated. Of particular interest to us is the “Lévy flight” 
model developed by Paul Lévy, a French mathematician. He described a 
particular class of random walks, in which the distance l travelled be
tween events (referred to in this paper as “steps”) is drawn from a 
“heavy-tailed” and scale-invariant probability distribution defined by 

Fig. 1. The concepts of Lévy walk (LW), and minibus taxi movement behavior: a) minibus taxi passenger search behavior from origin (O) to destination (D); b) Lévy 
walks with different values of Lévy exponent α; c) scale-invariant and fractal properties of a Lévy walk. 
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Eq. (1) (Viswanathan et al., 1999; Reynolds, 2018). 

f (l)̃l− α for l ∈ [lmin,∞), (1)  

where l is the step length and α (referred to as the Lévy exponent) is in 
the range 1 < α ≤ 3 (Viswanathan et al., 2011). 

A Lévy walk exhibits three main properties: the probability distri
bution of step lengths ℓ is heavy-tailed; the turning angles θ between 
steps are normally distributed, and the step lengths fit strongly into the 
power-law probability distribution (defined by Eq. (1)). Fig. 1c illus
trates the scale-invariant property of a Lévy walk (zooming into a part of 
a Lévy walk trajectory (in Fig. 1b(ii)) reveals a statistically identical 
substructure), while the Figures in 1b illustrate the effects of varying 
values of α on the Lévy walk. Values closer to α = 1 lead to ballistic 
(near-straight) paths (Fig. 1b(iii)), while values closer to α = 3 lead to 
more Brownian behavior (Fig. 1b(i)). 

Subsequently, Reynolds (Reynolds, 2015) adapted the Lévy walk 
theory to explain the movement behavior of cognitively complex or
ganisms in space when searching for patchily and randomly distributed 
resources. There is empirical evidence of Lévy walks in the movements 
of foraging birds (albatross (Shlesinger, 2006)), animals (deers (Viswa
nathan et al., 1999), spider monkeys (Ramos-Fernandez et al., 2003), 
grey seals (Shlesinger, 2006)), bees (bumblebees (Edwards et al., 2007)) 
and humans (hunter-gatherers (Raichlen et al., 2014), fishermen (Ber
trand et al., 2007), pedestrians (Klopp and Cavoli, 2019)). 

Exponents of the Lévy walk theory in the early 2000’s sought to 
explain how organisms optimize their search for sparsely distributed 
resources (such as food), sometimes under predatory risks. Viswanathan 
et al. (Viswanathan et al., 1999) combined the Lévy walk model with the 
optimal foraging approach to formulate and test the Lévy flight hy
pothesis. This hypothesis states that “since Lévy flights optimize random 
searches, biological organisms must have therefore evolved to exploit 
Lévy flights”. This paved the way for several predictions of optimal 
values of α (Lévy exponent in eq. 1) based on the density of the resources 
a walker is searching for, and how renewable the resources are. 
Consensus was reached that the optimal value of the exponent α in the 
Lévy probability distribution, and hence the predicted movement 
pattern, depends on the “depleting” and “non-depleting” nature of the 
resource and their density relative to the random walker (Viswanathan 
et al., 1999; Ferreira et al., 2012). Furthermore, the optimal values of α 
approach 1 (ballistic movement with little change in direction) for 
depletable resources. For non-depletable resources, α depends on the 
target density, for sparsely distributed resources α is closer to 2, and for 
highly dense resources α is closer to 3 (Brownian motion) (Ferreira et al., 
2012). 

Lévy walk behavior observed in human movements occur in vast 
contexts ranging from hunting and foraging among preliterate societies 
to myriads of contexts among modern and often urban societies. Evi
dence of Lévy walks in humans predates history as shown in raw ma
terial transport distances in the archaeological records (Perreault and 
Brantingham, 2011). Motivated by the need to search for food, shelter 
and avoid predators (dangerous animals), preliterate human movements 
exhibited Lévy walks (Raichlen et al., 2014; Bertrand et al., 2007). Ur
banization, industrialization and higher cognitive abilities among 
humans have diversified the contexts in which Lévy walk behavior can 
be studied. These contexts are often determined by the travel purpose 
(such as travel to shop, work, school or leisure), travel mode, and spatial 
scale (James et al., 2011; Rhee et al., 2008; Brockmann et al., 2006; Cao 
et al., 2011; Scafetta, 2011). In all these contexts, evidence of Lévy walks 
has been found. For example, GPS traces from five different outdoor sites 
(James et al., 2011), circulation of bank notes (Brockmann et al., 2006), 
city cabs in Beijing (Cao et al., 2011) and long-range human displace
ments (from 1 to 1000 km) (Scafetta, 2011) exhibited Lévy walks. 

However, we did not find any research providing evidence (or 
absence thereof) of Lévy walk behavior in minibus taxis in a paratransit 
system. We contend that the minibus taxi movements represent another 

context in which we can study Lévy walk behavior among humans when 
searching for non-depletable patchily located and sparsely distributed 
resources. On the basis of the visual inspection of known minibus taxi 
trajectories illustrated in Fig. 1a, we hypothesize that while searching 
for, picking up and dropping off passengers, minibus taxi movement 
may be consistent with Lévy walk behavior. 

2.3. Spatial similarity analysis of movement trajectories 

The empirical literature on quantifying and analyzing movement 
trajectory similarity is sparse and scattered across application domains 
and classes of moving objects. Güting et al. (Güting et al., 2005) iden
tified two classes: objects that maintain a constant shape while moving, 
such as animals, human beings and vehicles, which they call moving 
point objects, and those that change their shape, such as a forest fire, 
which they represent as polygons. This paper is concerned with the 
former. 

The shape of the trajectory is significant. It illustrates how a moving 
object “winds” its way through a spatial reference system, and it is 
quantitatively represented in terms of tortuosity, curviness and fractal 
dimension (Ranacher and Tzavella, 2014). In this study we use only 
tortuosity (a property of a curve being tortuous or twisted, having many 
turns, or degree of winding). Researchers use the term “tortuosity” to 
distinguish between a planned, oriented and effective behavior (low 
tortuosity), and random search behavior (high tortuosity) (Benhamou, 
2004). 

We found no studies that quantitatively describe the spatial simi
larities (and dissimilarities thereof) between minibus taxis’ movement 
trajectories in a paratransit system, hence the need to fill the gap. 

The literature we reviewed on the current state of paratransit in 
Africa, the similarity or dissimilarity between animals and humans that 
use the Lévy walk search optimization strategy, and the spatial simi
larity measures of movement trajectories, revealed gaps in paratransit 
movement-related studies. In addition, the absence of similar studies as 
applied to minibus taxi movements in a paratransit system, led us to 
undertake this empirical study. It expands on some of the few existing 
and limited studies of the operations of minibus taxis in a paratransit 
system in the Global South (du Preez et al., 2019; Lucas et al., 2019; 
Ndibatya et al., 2016). 

3. Methods 

Having acquired and preprocessed the data from the minibus taxis, 
we used three methods to characterize their movement patterns. We first 
modelled their trajectories as “walks” composed of sequences of linear 
steps, defined rules for determining successive steps, and then tested the 
Lévy walk hypothesis. Secondly, we compared the spatial distances of 
different minibus taxi trajectories to confirm or refute our route evolu
tion claim. Thirdly, we analyzed the tortuosity (degree of winding) of 
the trajectories in case it might explain the effort drivers use to search for 
passengers. We used data collected from a sample of Kampala’s taxis. To 
maximize the accuracy of our results, we assumed that all GPS points 
were located on the earth’s surface, and we computed the distance be
tween them using Vincenty’s formula. 

3.1. Data acquisition and pre-processing 

Kampala, Uganda’s capital, is home to one and a half million people 
scattered throughout five administrative divisions: Central, Kawempe, 
Lubaga, Makindye and Nakawa. Commuters from the latter four and 
beyond converge mainly in the Central division for work, shopping, 
leisure and school (Jiang et al., 2009). Minibus taxis, which constitute 
82% of the urban public transport, throng the streets of Kampala in a 
seemingly chaotic pattern, picking up and dropping off passengers at 
various stops in the city center and the various settlements (Jiang et al., 
2009). Many of the stops are informal, i.e. they are not officially 
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designated taxi or bus stops, but develop organically according to the 
demand in a particular area. 

To study the movements of the minibus taxis in time and space, we 
used standard GPS receivers with a spatial accuracy of three meters and 
a temporal resolution set to 20 s when the vehicle’s ignition is on and 10 
min when the ignition is off. The data collected included unique identity, 
timestamp, longitude, latitude, speed and direction. 

We fitted 20 minibus taxis with GPS receivers that transmitted data 
to our servers for a period of eight months (Jan 2017 to August 2017). 
For analysis in this paper, we used continuous movement data from nine 
receivers. Data from other receivers were omitted because of substantial 
discontinuities due to malfunction, vandalism of the receiver, or 
frequent mechanical problems with the taxi. Preliminary statistical 
analysis indicated that the nine minibus taxis under study were active 
for 155 to 235 days, 12 to 23 h a day, with peak activity occurring be
tween 4:00 and 9:00, 12:00 and 14:00, and 16:00 and 21:00. The mean 
and standard deviation of days active was 186 and 71 days respectively, 
while the mean and standard deviation of hours active were 16.3 and 6 h 
respectively. 

To improve performance during analysis, we used MIT’s path 
simplification python library (simplification) to reduce the GPS points 
while maintaining the integrity of the trajectories. Simplification is a 
robust high-level implementation of the Ramer-Douglas-Peucker algo
rithm. Fig. 2a shows a sample minibus taxi trajectory for one day, Fig. 2b 
the trajectory simplification process as applied to a small section of the 
original trajectory, Fig. 2c the simplified trajectory, and Fig. 2d the 
pause-based model that we used to extract Lévy walk steps and turning 
angles between subsequent steps. 

3.1.1. The pause-based model 
In a pause-based model (illustrated in Fig. 2d), we define a step as a 

straight-line movement between two positions P1 and P4 (regarded as 
pauses) given that the instantaneous velocities at positions P2, P3, and 
P5 are higher than the threshold velocity. The step length l is the sum of 
all individual segment distances that make up a step, whereas the 
turning angle θ is the bearing of the next pause (P6) from the current 
pause (P4). 

From the GPS traces, we extracted the taxis’ steps, step lengths, 
turning angles, and average velocities during the step. To get these data, 
we re-sampled the trace data every five minutes and re-computed the 
relative position in space, cumulative distance and average velocity. 
Using the re-sampled data, we then extracted steps using a pause-based 

model. Fig. 2e shows the spatial distribution of steps and pauses 
extracted from a minibus taxi trajectory sample in Fig. 2a. 

3.2. The Lévy walk as a descriptor for minibus taxi mobility 

To test whether minibus taxis movements exhibit Lévy walks, we 
divided the minibus taxi trajectories’ data into steps and pauses, as 
described in the pause-based model. We then fitted the step lengths to a 
power-law distribution defined by a probability density function: f(l) ~ 
l− α where l is the step length, and α is the Lévy exponent. We then 
performed a logarithmic transformation on the data and estimated the 
Lévy exponent α from a power-law fit for each minibus taxi using the 
power-law python package (Alstott et al., 2014). 

3.2.1. Methods to test the minibus taxi Lévy walk behavior 
To test the Lévy walk behavior in minibus taxi movements, we per

formed three different tests on the probability distributions of step 
lengths and step turning angles. First, we examined the step length 
distribution’s mean spread (standard deviation) and skewness to check 
if it was heavy-tailed. Second, we examined the distribution of turning 
angles between steps to establish whether they were normally distrib
uted. Third, we fitted the step lengths’ data to a power-law distribution 
after a logarithmic transformation and estimated the Lévy exponent α to 
see if it was within the range 1 < α ≤ 3 (the third property of a Lévy walk 
(Klopp and Cavoli, 2019)). Furthermore, we tested the goodness of the 
fit using the maximum likelihood estimation method, as suggested by 
Alstott et al. (Alstott et al., 2014). We did this by comparing the R (log- 
likelihood) and p (significance) values from the comparison of the best 
fit of power-law distribution with other distributions, such as expo
nential distribution. 

3.3. Comparing trajectories 

We analyzed the similarities and dissimilarities between minibus taxi 
trajectories by computing their spatial distances from a common fixed 
position X. We defined a trajectory as the evolution of a minibus taxi’s 
position in space (on the earth’s surface) for 24 h; space as the surface of 
the spheroid earth; position (0.314921, 32.578705) as the latitude and 
longitude coordinates of the fixed position X, which is a central location 
at the city square in Kampala; and spatial distance as the unit measure of 
how far (in space) a one-day trajectory is from a given reference posi
tion. Given a trajectory T1 (illustrated in Fig. 2f) for a day D1, we 

Fig. 2. a) Minibus taxi (MBT) trajectory sample for one day; b) trajectory simplification process; c) simplified trajectory, d) pause-based model to extract steps from a 
section of the minibus taxi trajectory in a, (e) spatial distribution steps and pauses extracted from the simplified trajectory in (c); f) trajectory spatial distance 
estimation; and g) trajectory tortuosity estimation. 
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compute its spatial distance ℓ with respect to an arbitrary fixed reference 
position X(lon,lat) in space using the equation: 

ℓ =
∑n

i=0

̅̅̅̅
di

√ ̅̅̅̅
βi

√
(2)  

where d is the Vincenty distance between the arbitrary fixed GPS posi
tion X and the ith GPS point on the trajectory T, and β is the bearing angle 
between two coordinates A(Alat,Alon) and B(Blat, Blon) on the earth’s 
surface, given by the equation 

β = atan2(γ, θ) (3)  

where, γ = cos (Blat) sin (|Blon − Alon| ) and θ = cos (Alat) sin (Blat) − sin 
(Alat) cos (Blat) cos (|Blon − Alon| ). 

For each minibus taxi, we normalized the values of all trajectories’ 
spatial distances to fall in the range 0 to 1 in order to simplify the 
analysis and interpretation of results. Table 2 and Fig. 5a(ii) show the 
spatial distance distribution for the minibus taxis, sampled per day. 

3.4. Trajectory tortuosity 

To quantify and analyze the shapes of individual trajectories in order 
to describe how the minibus taxis wind their way through the spatial 
reference system, we computed their respective tortuosity values. 

We estimated the tortuosity of trajectories as the ratio of a beeline 
distance between the start and end of the trajectory L to the length of the 
travelled trajectory S (Grisan et al., 2003) as illustrated in Fig. 2g. For N 
minibus taxi sub-trajectories in a day’s trajectory, the tortuosity τ is 
computed as: 

τ =
N − 1

L
∑N

i=1

(
Li

Si
− 1

)

(4)  

where N is the number of sub-trajectories, L is the beeline distance be
tween the start and end of the day’s trajectory, Li is the beeline distance 
of the ith sub-trajectory, and Si is the cumulative length of the travelled 
sub-trajectory. 

4. Results 

4.1. Minibus taxi movements and Lévy walk behavior 

From the extracted steps, we found that the probability distribution 
of step lengths is heavy-tailed, as shown in Fig. 3a, with a mean μ and a 
standard deviation σ of 0.83 and 1.9 km respectively. Its positive 
skewness of 4.52 shows a significant bulge on the distribution “head” 
and some rare long walks (“tails”) of up to 39 km. This is the first 
identifying characteristic of Lévy walk behavior (Viswanathan et al., 
2011). We also found the second identifying characteristic: turning an
gles between steps are normally distributed with a mean of 89.4o and a 
standard deviation of 53.3o, as shown in Fig. 3b. 

Micro-level analysis and fitting of individual minibus taxi walks’ 
data to the power-law function revealed a strong power-law behavior for 
minibus taxis UTX-04, UTX-11, UTX-12, UTX-13 and UTX-17, with an 
estimated Lévy exponent α in the range 1 < α ≤ 3 (see power-law pa
rameters in Table 1). We further confirmed the power-law behavior in 
the steps data by comparing the goodness of fit with other distributions 
and computing the log-likelihood ratio R between the candidate distri
butions. We also noted the significance value p. Table 1 shows the cor
responding values of R and p from the goodness-of-fit comparison 

Fig. 3. Summary distributions for all minibus taxis’ step lengths, turning angles and steps speeds (speeds were calculated for distances where heads <= 0.676 km, 
tails > 0.676 km). 
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between power-law and two other distributions (exponential and log- 
normal). Figs. 4a(ii), b(ii), and c(ii) compare the goodness of fit of an 
exponential fit with the power-law fit. The positive R values and p values 
greater than 0.05 (in Table 1) further confirmed a stronger fit to the 
power-law than to the exponential and log-normal distributions. Fig. 4 
shows that the step lengths data for UTX-04, UTX-13 (4a and 4b) fit the 
power-law better than the data for UTX-19 do (4c). Fig. 4a(iii), b(iii), 
and c(iii) further illustrate the strength of power-law fit to the tails 
(>0.676) of the data. Fig. 4a(iv), b(iv) and c(iv) exhibit a Gaussian 
mixture of turning angles with multiple Gaussian distributions where 
each peak represents a major hub visited by the minibus taxi, such as a 
formal taxi rank, and then makes a sharp turn. We also noted that the 
multi-Gaussian nature of the turning angle distributions is responsible 
for the generally high standard deviation of 53.3o observed in Fig. 3b. 
(See Fig. 5.) 

We concluded that five of the nine minibus taxis under study 
exhibited Lévy walk behavior. Jiang et al. (Klopp and Cavoli, 2019) say 
that to identify a Lévy walk pattern, all that is needed is to detect power- 
law behavior and then estimate the exponent α to see whether it is 
within the range 1 < α < 3. For minibus taxis, UTX-04, UTX-11, UTX-12, 
UTX-13 and UTX-17 the Lévy exponent α for step lengths was in the 
range 1.51 ≤ α ≤ 1.98, and the R values when we compared the power- 
law function fit with exponential and log-normal model fits were in the 
range 9.10 ≤ R ≤ 127.44. Furthermore, the p values for those five taxis 

were in the range 0.62 ≤ p ≤ 0.24, indicating a strong fit to the power- 
law, and hence indicating a significant presence of Lévy walk behavior 
in minibus taxi movement trajectories. 

4.2. How similar are the minibus taxis’ trajectories? 

The spatial distance ℓT of a trajectory T, given by eq. 2, is the distance 
between a fixed position X and the trajectory T, as illustrated in Fig. 2f. 
We used the observed spatial distances to describe how trajectories from 
the same minibus taxi differ from each other in space. We took one day 
as the time interval of each taxi trajectory under discussion. Most of the 
spatial distances of the minibus taxi trajectories were normally distrib
uted with a mean μ of 0.53 and moderately spread with a standard de
viation σ of 0.21. Fig. 5a(i) shows the distribution of normalized spatial 
distances. Fig. 5a(ii) shows the distributions of distances for each of the 
nine minibus taxis and Table 2 gives a more detailed breakdown. 

We observed a moderate spread in the distribution of spatial dis
tances. This strongly suggests that minibus taxis often divert from the 
most frequented routes, leading to discovery of new routes, which is also 
an indicator of growing passenger demand in areas where the new route 
passes. Practically, if the taxi travelled on the same route all the time, the 
spatial distances would be less spread. Fig. 5c illustrates how the original 
route (in 5c(i)) significantly changed over time (to 5c(ii)), then to 5c(iii) 
in eight months. These changes demonstrate agility and variability, 

Table 1 
Step lengths, turning angles, Lévy exponent α and model goodness of fit results.           

Power-law Goodness of fit: power-law with   

Lévy step lengths ℓ (km) Step turning angles θo Parameters exponential Log-normal 

Taxi ID #Steps Max μ δ Skew μ δ Skew α σ R p R p 

UTX-04 7887 17.99 1.03 1.79 3.84 89.93 54.19 − 0.04 1.98 0.016 9.01 0.070 9.76 0.0 
UTX-11 45,924 24.74 0.47 1.61 6.13 91.93 53.83 − 0.04 1.53 0.003 101.1 0.120 17.1 0.0 
UTX-12 45,947 25.05 0.51 1.84 5.77 89.68 54.38 0.02 1.51 0.003 127.4 0.080 10.5 0.0 
UTX-13 18,387 23.81 1.27 2.04 3.30 88.93 57.24 − 0.01 1.96 0.009 19.93 0.240 14.9 0.0 
UTX-15 7541 18.14 1.21 1.76 3.02 87.71 53.12 − 0.02 4.18 0.176 − 1.87 0.062 2.27 0.02 
UTX-16 13,008 26.92 1.12 1.70 3.34 88.72 47.84 − 0.05 4.75 0.159 1.55 0.122 0.65 0.51 
UTX-17 2026 20.36 1.52 2.42 2.80 88.86 47.40 − 0.04 1.79 0.021 7.50 0.000 6.83 0.0 
UTX-18 9515 32.21 1.22 1.94 3.93 87.79 51.81 − 0.01 3.86 0.127 1.08 0.279 1.43 0.15 
UTX-19 12,780 38.07 1.63 2.92 3.22 85.04 46.19 0.07 7.36 0.521 0.52 0.606 0.18 0.86  

Fig. 4. Power-law analysis of Lévy walk steps.  
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which lends itself to potential evolution. 

4.3. The significance of the observed trajectory tortuosity 

The shape of a trajectory illustrates how a moving object winds or 
twists its way through a spatial reference system. The similarity of 
shapes can be expressed qualitatively (topologically), or quantitatively, 
using parameters such as tortuosity (curviness), and fractal dimension 
(Ranacher and Tzavella, 2014). We used eq. 4 to estimate the tortuosity 
τ of the minibus taxi trajectories. The tortuosity values were normalized 
to fall in the range 0 to 1 and summarized in Table 2. Generally, the 
tortuosity of minibus taxi trajectories is high as shown by the general 
distribution in Figs. 5b(i), and at the individual taxi level (5b(ii)). We 
argue that this tortuosity distribution is suggestive of minibus taxi 
drivers’ extreme determination in searching for passengers to make the 
trips profitable. 

5. Discussion 

The results from this study show that minibus taxis movements in 
Kampala (which represent searching for, acquiring, loading passengers, 
and transporting them to their destinations) follow a Lévy walk pattern 
similar to movements observed in a wide range of less cognitively 
complex species (Shlesinger, 2006; Viswanathan et al., 1999), and 
recently in humans (Klopp and Cavoli, 2019; Raichlen et al., 2014; 
Bertrand et al., 2007). The Lévy walk is evident in the many short steps 
interspersed with rare long steps, and in the Lévy exponent α values (in 
the range 1 < α ≤ 3) for the greater number of the minibus taxi trajec
tories (five of the nine sampled taxis). Based on (Viswanathan et al., 
1999; Ferreira et al., 2012)’s findings of optimal Lévy walk for unde
pletable, heterogeneous and patchily located resources, we can claim 

that two taxis (UTX-04 and UTX-13) had adopted near-optimal search 
strategies, because they had values of α ≈ 2 (refer to Table 1). The near- 
ballistic behavior (α values 1.53 and 1.51) exhibited by taxis UTX-11 
and UTX-12 might indicate that the drivers were influenced by previ
ous knowledge of passenger demand (positive memory influence), or it 
could simply indicate that they often loaded passengers from the taxi 
ranks. Usually, taxis that load from the taxi ranks take longer to fill up. 
However, they only load “direct route passengers” going to areas closer 
to the final destination of the taxi, and they charge a fixed fare equiv
alent to the maximum amount for the passenger going furthest. We can 
suggest three possible reasons for the near-Brownian (α > 3) movement 
behavior of minibus taxis UTX-15, UTX-16, UTX-18 and UTX-19. First, 
the drivers could be new (to the routes, or to taxi driving) and, having 
not yet figured out a better passenger search strategy, were operating a 
very inefficient loss-prone strategy. Second, they could be town-service 
taxis operating in areas with densely distributed informal stops and 
uniformly distributed short trips demand, leading them to adopt a 
random search strategy. Third, they might be perennial traffic rule of
fenders adopting an evasive strategy to avoid encounters with traffic 
officers on the main routes. This comes at the cost of never being certain 
of the demand on their “by-pass” routes. 

Furthermore, the high tortuosity and moderate spread of spatial 
distances (in Table 2) suggests that, the drivers search for passengers 
extremely energetically, some of them aggressively. If the trips are not 
profitable, one strategy drivers use to improve profitability is to stay at a 
stop (hold back) until the taxi is full or almost full, and the other is to 
explore new routes, potentially leading to route evolution. Though we 
could not verify how profitable the trips were because we lacked data on 
minibus taxi occupancy, we did a visual inspection of the geospatial 
layout of minibus taxis routes (using quantum geographical information 
system (QGIS) software) from individual minibus taxis. From the 

Fig. 5. (a) distribution of normalized spatial distance (b) distribution of normalized tortuosity, (c) illustration of minibus taxi route variability over time, which lends 
itself to potential evolution. 

Table 2 
Trajectory characteristics (distance ℓ, tortuosity τ) and Lévy step speeds (heads ≤ 0.67, tails>0.67).    

Trajectory characteristics Lévy steps speeds (km/h) 

Taxi IDs #Trjs SD ℓ Tortuosity τ Heads Tails   

μ δ μ δ Max μ δ Min μ δ Max 

UTX-04 1983 0.39 0.19 0.68 0.17 76.41 9.53 7.65 3.31 22.73 7.89 52.67 
UTX-11 4191 0.40 0.10 0.96 0.04 48.54 0.36 1.03 2.01 14.45 8.09 47.45 
UTX-12 4177 0.37 0.11 0.96 0.04 38.43 0.29 0.73 2.00 15.52 9.12 73.33 
UTX-13 4806 0.67 0.19 0.90 0.09 53.49 10.51 6.95 2.65 21.30 5.51 57.73 
UTX-15 1421 0.50 0.23 0.93 0.06 64.88 10.21 7.34 4.98 21.33 7.00 55.18 
UTX-16 3483 0.57 0.24 0.93 0.08 65.23 9.71 6.41 2.05 20.32 5.09 49.30 
UTX-17 185 0.44 0.40 0.95 0.06 41.51 10.30 6.35 9.42 20.86 5.58 62.76 
UTX-18 1885 0.63 0.28 0.92 0.06 53.42 10.71 6.83 3.04 21.61 6.22 51.07 
UTX-19 1728 0.74 0.20 0.85 0.10 51.36 9.71 6.67 2.02 21.11 7.52 55.42  
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geospatial layout of the routes (in Fig. 5c), we confirmed the visible 
change in the shapes of significant routes over several months, and thus 
concluded that the taxis’ routes evolved. Another possible reason for the 
route evolution is the urban sprawl mentioned earlier. With the prolif
eration of informal settlements, and poor planning for the locations of 
amenities like schools, hospitals and shopping centers, the passenger 
demand is sparsely distributed among sparsely populated patches 
around the city, hence the unstable transport supply characteristics 
visible in route changes. 

6. Conclusion and recommendations 

We have demonstrated, using a sample of nine minibus taxis in 
Kampala, that minibus taxi movements in a quasi-demand-responsive 
paratransit system exhibit features statistically similar to those of a 
Lévy walk. We argue that even the minibus taxis that showed features 
outside the Lévy walk parameters will eventually subconsciously adopt 
the Lévy walk strategy. This, we suspect, is because of memory influence 
(ability to learn, memorize and respond to passenger demand), and the 
need to optimize profits. Our research further showed that significant 
minibus taxi routes evolved (changed topology and shape) with time, 
which is suggestive of the dynamic demand patterns, and the demand- 
responsive nature of the minibus taxi paratransit system. Finally, we 
found that minibus taxi routes were extremely tortuous, indicating a 
determined, energetic, and even aggressive search for passengers. The 
stress of this kind of search could aggravate driver tempers, encouraging 
dangerous driving behavior and leading to road accidents. Our research, 
therefore, could be useful for urban planners interested in transit- 
oriented city planning, to optimize land use and distribution of the 
public amenities which are the primary origins and destinations of 
passenger trips. Furthermore, a transit-oriented city and passenger de
mand plan could reduce the tortuosity of routes, substantially optimize 
the Lévy exponent, thereby reducing aggression during passenger search 
and producing less frustrated, happier drivers and consequently a safer 
paratransit system. This research could also be useful for modeling 
purposes, especially agent-based modeling of minibus taxis in para
transit systems. 

We were unable to conclusively verify the effectiveness of the Lévy 
walk strategy in minibus taxis because we lacked data on minibus taxi 
occupancy. However, based on the Lévy exponent α, we suspect that the 
minibus taxi search strategies revealed by our data were inefficient. This 
is because only two minibus taxis had a close to optimal Lévy exponent 
(UTX-04, UTX13, with values of α=1.98 and α=1.96). We can further 
conclude that the other seven minibus taxis passenger search strategies 
were not adquate, pointing to a rather inefficient paratransit system. 

For further research, we recommend topics involving the spatial- 
temporal distribution of passenger trips (trip demand), the influence 
of predators (police and competing minibusses) on the values of α, and 
their subsequent relationship with occupancy and profitability as in
dicators of passenger search strategy effectiveness and optimality. We 
also foresee further analysis being done to fully characterize and 
demonstrate route evolution. 
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environment on Lévy random search efficiency: fractality and memory effects. Phys. 
A Stat. Mech. Appl. 391, 3234–3246. URL: https://www.sciencedirect.com/science/ 
article/pii/S0378437112000544. doi: 10.1016/J.PHYSA.2012.01.028.  

Gauthier, A., Weinstock, A., 2010. Africa transforming paratransit into BRT. Built 
Environ. 36, 317–327. https://doi.org/10.2148/benv.36.3.317. 

Grisan, E., Foracchia, M., Ruggeri, A., 2003. A novel method for the automatic evaluation 
of retinal vessel tortuosity. In: Proceedings of the 25th Annual International 
Conference of the IEEE Engineering in Medicine and Biology Society (IEEE Cat. 
No.03CH37439), pp. 866–869. https://doi.org/10.1109/IEMBS.2003.1279902. 

Güting, R.H., Schneider, M., Güting, R.H., Schneider, M., 2005. Modeling and Querying 
History of Movement. Moving Objects Databases, pp. 99–185. URL: https://www.sci 
encedirect.com/science/article/pii/B9780120887996500050 https://doi.org/10. 
1016/B978-012088799-6/50005-0. 

Heinze, R., 2018. “Taxi Pirates”: a comparative history of informal transport in Nairobi 
and Kinshasa, 1960s–2000s. In: Agbiboa, D. (Ed.), Transport, Transgression and 
Politics in African Cities: The Rhythm of Chaos, 1st ed. Routledge, London and New 
York, pp. 31–52. https://doi.org/10.4324/9781351234221. chapter 1.  

ITP, 2010. Pre-feasibility Studies for the Development of a Long Term Integrated Bus 
Rapid Transit system for Greater Kampala Metropolitan Area. Technical Report. 
World Bank, Kampala City Council, Government of Uganda. 

James, A., Plank, M.J., Edwards, A.M., 2011. Assessing Lévy walks as models of animal 
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mobility with a multi-scale cost/benefit model. Chaos 21. https://doi.org/10.1063/ 
1.3645184. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-848552 
61143&doi=10.1063%2f1.3645184&partnerID=40&m 
d5=a05936193a5515be55eb6b9dcca3086d. 

Shlesinger, M.F., 2006. How does one best search for non-replenishable targets at 
unknown positions? An optimized search strategy could be applied to situations as 
diverse as animal foraging and time-sensitive rescue missions. Nature 443, 281–282. 
URL: https://doi.org/10.1038/443281a. 

Viswanathan, G.M., Buldyrev, S.V., Havlin, S., da Luz, M.G.E., Raposo, E.P., Stanley, H. 
E., 1999. Optimizing the success of random searches. Nature 401, 911–914. https:// 
doi.org/10.1038/44831. 

Viswanathan, G.M., da Luz, M.G.E., Raposo, E.P., Stanley, H.E., 2011. Lévy flight 
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